Evaluation of skin natural change function in split-thickness skin graft
##plugins.themes.academic_pro.article.main##
Abstract
Treatment for severe burns has improved rapidly in the last 20 years. Nowadays, patients can survive with burns covering up to approximately 90% of the body, although they often face permanent physical impairment. This type of research is a literature review. A literature review was conducted to gather information regarding the evaluation of skin natural change function in the split-thickness skin graft. This research is a type of review article that aims to obtain information about acne based on bio-markers. Source of data used secondary sources. The method of data collection through collecting data was from research articles taken within the last five years. Skin grafting remains an essential step on the reconstructive surgeon ladder. Meanwhile, the basic premise has remained similar results over the years. New techniques and devices have contributed to significantly improved functional and aesthetic results. Advances in the production of skin substitutes have provided better options to treat patients and will continue to be an essential and dynamic component of this field in the future.
##plugins.themes.academic_pro.article.details##
References
Asuku, M., Yu, T. C., Yan, Q., Böing, E., Hahn, H., Hovland, S., & Donelan, M. B. (2021). Split-thickness skin graft donor-site morbidity: A systematic literature review. Burns, 47(7). https://doi.org/10.1016/j.burns.2021.02.014
Borrelli, M. R., Sinha, V., Landin, M. L., Chicco, M., Echlin, K., Agha, R. A., & Ross, A. M. K. (2019). A systematic review and meta-analysis of antibiotic prophylaxis in skin graft surgery: A protocol. International Journal of Surgery Protocols, 14. https://doi.org/10.1016/j.isjp.2019.02.001
Chou, P. R., Wu, S. H., Hsieh, M. C., & Huang, S. H. (2019). Retrospective study on the clinical superiority of the vacuum-assisted closure system with a siliconbased dressing over the conventional tie-over bolster technique in skin graft fixation. Medicina (Lithuania), 55(12). https://doi.org/10.3390/medicina55120781
Dardari, D., Lequint, C., Jugnet, A. C., Bénard, T., Bouly, M., & Penfornis, A. (2022). Curing Necrotic Angiodermatitis with an Intact Fish Skin Graft in a Patient Living with Diabetes. Medicina (Lithuania), 58(2). https://doi.org/10.3390/medicina58020292
Dubin, D. P., Routt, E. T., Lin, M. J., Torbeck, R. L., & Khorasani, H. (2020). Intraoperative electrosurgical depilation of a skin graft. Journal of Cutaneous and Aesthetic Surgery, 13(3). https://doi.org/10.4103/JCAS.JCAS_31_20
Dunev, V., Pencho, G., Stoykov Boyan, & Kolev Nikolay. (2020). Unmeshed split-thickness SKIN grafts for penile plastic in patients with paraffinoma. Urology Case Reports, 32. https://doi.org/10.1016/j.eucr.2020.101249
Dunev, V., Vladislav, M., & Pencho, G. (2021). Early result of meshed split-tickness skin graft in patient with paraffinoma of penis. Urology Case Reports, 34. https://doi.org/10.1016/j.eucr.2020.101499
Fernandez, N., Medina, M., Wessells, H., & Perez, J. (2021). Geometrical Model of Free Skin Graft for the Optimization of Glans Reconstruction after Partial Penectomy. Urologia Colombiana, 30(3). https://doi.org/10.1055/s-0041-1731771
Fukuoka, K., Yagi, S., Suyama, Y., Kaida, W., Morita, M., & Hisatome, I. (2021). Effect of subcutaneous adrenaline/saline/lidocaine injection on split-thickness skin graft donor site wound healing. Yonago Acta Medica, 64(1). https://doi.org/10.33160/yam.2021.02.014
Gokkaya, A., Gorgu, M., Astarci, H. M., Karanfil, E., Kizilkan, J., & Dogan, A. (2020). Skin graft storage in platelet rich plasma (PRP). Dermatologic Therapy, 33(1). https://doi.org/10.1111/dth.13178
Gostian, P. D. med A. O., Balk, D. med M., Stegmann, D. med A., Iro, P. D. med D. h. c. H., & Wurm, P. D. med J. (2020). Full-Thickness Skin Grafts and Quilting Sutures for the Reconstruction of Internal Nasal Lining. Facial Plastic Surgery, 36(3). https://doi.org/10.1055/s-0040-1713116
Greenwood, J. E. (2017). The evolution of acute burn care - retiring the split skin graft. Annals of the Royal College of Surgeons of England, 99(6). https://doi.org/10.1308/rcsann.2017.0110
Grunzweig, K. A., Ascha, M., & Kumar, A. R. (2019). Fibrin tissue sealant and minor skin grafts in burn surgery: A systematic review and meta-analysis. Journal of Plastic, Reconstructive and Aesthetic Surgery, 72(6). https://doi.org/10.1016/j.bjps.2018.12.036
Gupta, S., Gupta, V., & Chanda, A. (2022). Biomechanical modeling of novel high expansion auxetic skin grafts. International Journal for Numerical Methods in Biomedical Engineering, 38(5). https://doi.org/10.1002/cnm.3586
Gupta, V., & Chanda, A. (2022). Expansion potential of skin grafts with alternating slit based auxetic incisions. Forces in Mechanics, 7. https://doi.org/10.1016/j.finmec.2022.100092
Huyan, Y., Lian, Q., Zhao, T., Li, D., & He, J. (2020). Pilot study of the biological properties and vascularization of 3D printed bilayer skin grafts. International Journal of Bioprinting, 6(1). https://doi.org/10.18063/ijb.v6i1.246
Kanapathy, M., Hachach-Haram, N., Bystrzonowski, N., Becker, D. L., Mosahebi, A., & Richards, T. (2021). Epidermal graft encourages wound healing by down-regulation of gap junctional protein and activation of wound bed without graft integration as opposed to split-thickness skin graft. International Wound Journal, 18(3). https://doi.org/10.1111/iwj.13536
Kane, L. P., Shrader, T. C., & Stice, R. C. (2019). Successful, Full-Thickness Skin Graft in a Bald Eagle (Haliaeetus leucocephalus). Journal of Avian Medicine and Surgery, 33(2). https://doi.org/10.1647/2017-323
Kitala, D., Kawecki, M., Klama-Baryła, A., łabuś, W., Kraut, M., Glik, J., Ryszkiel, I., Kawecki, M. P., & Nowak, M. (2016). Allogeneic vs. autologous skin grafts in the therapy of patients with burn injuries: A restrospective, open-label clinical study with pair matching. Advances in Clinical and Experimental Medicine, 25(5). https://doi.org/10.17219/acem/61961
Lee, E., Park, S. I., Kim, D., Jin, H., & Jeong, H. S. (2018). Modified bolster dressing with continuous suction improves skin graft survival for an oral cavity wound. Journal of Otolaryngology - Head and Neck Surgery, 47(1). https://doi.org/10.1186/s40463-018-0314-7
Liu, T. H., Hsieh, M. C., Chou, P. R., & Huang, S. H. (2020). Reconstruction for defects of total nail bed and germinal matrix loss with acellular dermal matrix coverage and subsequently skin graft. Medicina (Lithuania), 56(1). https://doi.org/10.3390/medicina56010017
Martignago, C. C. S., Tim, C. R., Assis, L., Da Silva, V. R., Santos, E. C. B. Dos, Vieira, F. N., Parizotto, N. A., & Liebano, R. E. (2020). Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats. Lasers in Medical Science, 35(1). https://doi.org/10.1007/s10103-019-02812-6
Mershon, J. P., & Baradaran, N. (2021). Recurrent anterior urethral stricture: Challenges and solutions. In Research and Reports in Urology (Vol. 13). https://doi.org/10.2147/RRU.S198792
Mo, R., Ma, Z., Chen, C., Meng, X., & Tan, Q. (2021). Short-and long-term efficacy of negative-pressure wound therapy in split-thickness skin grafts: A retrospective study. Annals of Palliative Medicine, 10(3). https://doi.org/10.21037/apm-20-1806
Notorgiacomo, G., Klug, J., Rapp, S., Boyce, S. T., & Schutte, S. C. (2022). A bioreactor for studying negative pressure wound therapy on skin grafts. International Wound Journal, 19(3). https://doi.org/10.1111/iwj.13661
Parnham, A. S., Albersen, M., Sahdev, V., Christodoulidou, M., Nigam, R., Malone, P., Freeman, A., & Muneer, A. (2018). Glansectomy and Split-thickness Skin Graft for Penile Cancer. European Urology, 73(2). https://doi.org/10.1016/j.eururo.2016.09.048
Paw, E., Vangaveti, V., Zonta, M., Heal, C., & Gunnarsson, R. (2020). Effectiveness of fibrin glue in skin graft survival: A systematic review and meta-analysis. In Annals of Medicine and Surgery (Vol. 56). https://doi.org/10.1016/j.amsu.2020.06.006
Phua, Q. H., Han, H. A., & Soh, B. S. (2021). Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. In Journal of Translational Medicine (Vol. 19, Issue 1). https://doi.org/10.1186/s12967-021-02752-2
Poinas, A., Perrot, P., Lorant, J., Nerrière, O., Nguyen, J. M., Saiagh, S., Frenard, C., Leduc, A., Malard, O., Espitalier, F., Duteille, F., Chiffoleau, A., Vrignaud, F., Khammari, A., & Dréno, B. (2019). CICAFAST: Comparison of a biological dressing composed of fetal fibroblasts and keratinocytes on a split-thickness skin graft donor site versus a traditional dressing: A randomized controlled trial. Trials, 20(1). https://doi.org/10.1186/s13063-019-3718-4
Przekora, A. (2020). A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? In Cells (Vol. 9, Issue 7). https://doi.org/10.3390/cells9071622
Stone, R., Saathoff, E. C., Larson, D. A., Wall, J. T., Wienandt, N. A., Magnusson, S., Kjartansson, H., Natesan, S., & Christy, R. J. (2021). Accelerated wound closure of deep partial thickness burns with acellular fish skin graft. International Journal of Molecular Sciences, 22(4). https://doi.org/10.3390/ijms22041590
Sugiyono. (2017). Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif dan R &D. Alfabeta.
Sugiyono. (2018). Metode Penelitian Kuantitatif.
Sugiyono. (2019). Metode Penelitian Kuantitatif, Kualitatif, dan R&D (1st ed.). Penerbit Alfabeta.